Stuk van de Nature: Het zal ongeveer 2 weken duren voordat er meer duidelijk is over deze variant mbt vaccinatie effectiviteit.
Vaccine effectiveness
To understand the threat B.1.1.529 poses, researchers will be closely tracking its spread in South Africa and beyond. Researchers in South Africa mobilized efforts to quickly study the Beta variant, identified there in late 2020, and a similar effort is starting to study B.1.1.529.
Moore’s team — which provided some of the first data on Beta’s ability to dodge immunity — has begun work on B.1.1.529. They plan to test the virus’s ability to evade infection-blocking antibodies, as well as other immune responses. The variant harbours a high number of mutations in regions of the spike protein that antibodies recognize, potentially dampening their potency. “Many mutations we know are problematic, but many more look like they are likely contributing to further evasion,” says Moore. There are even hints from computer modelling that B.1.1.529 could dodge immunity conferred by another component of the immune system called T cells, says Moore. Her team hopes to have its first results in two weeks.
“A burning question is does it reduce vaccine effectiveness, because it has so many changes,” says Aris Katzourakis, who studies virus evolution at the University of Oxford, UK.
Researchers in South Africa will also study whether B.1.1.529 causes disease that is more severe or milder than other variants produce, Lessells said. “The really key question comes around disease severity.”
So far, the threat B.1.1.529 poses beyond South Africa is far from clear, researchers say. It is unclear whether the variant is more transmissible than Delta, says Moore, because there are currently low numbers of COVID-19 cases in South Africa. “We’re in a lull,” she says. Katzourakis says that countries where Delta is highly prevalent should be watching for signs of B.1.1.529. “We need to see what this virus does in terms of competitive success and whether it will increase in prevalence.”